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Abstract™ Let (X,Y), (Xl,}l), (XZ',Y’Z'),... b/e independent, identically distribfuted,
bivariate random variables and let m(x)=E(Y|X=x) be the regression curve of Y

on X. In this paper we éonsiderﬂ.‘the estimation of zeros(.and ?xtrema of the
regression curve via stochastic approximation methods. ;Ue ;);‘és‘ént;‘kconsistency

res'ilts of some sequential procedures and define termination rules providing

fixed width confidence intervals for the paramecters to be estimated. e
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- 1. Introduction
SN Let (X,Y),(X1,Y1),(X2,Y3),... be a sequence of independent, identically distributed, bi-
‘ . variate random variables with joint probability density function f(z,y). In this paper we consider
.: . the sequential estimation of zeros and extrema of m(z) = E(Y|X = £) using a combination of
2 \ the nonparametric kernel and stochastic approximation inethods. The structure of our sampling
w scheme is different from the one considered by Robbins and Monro (1951) since the experimenter,
:}t observing the bivariate data, has no control over the design variables {X,}, as is assumed in
{ :.:; classical stochastic approximation algorithms.
;::;, The proposed sequential procedure is based on the principal idea of nonparametric kerncel
£ estimation of m(z), i.e. to construct a weighted average of those observations (X, Y;) of which
X, happens to fall into an asymptotically shrinking neighborhood of z. The shrinkage of such a
2'!' ' neighborhood is usually parameterized by a sequence of bandwidths h, tending to zero, whereas
;:::: the shape of the neighborhoods is given by a read kerned funct: wm K.
;',::. ' Motivated by classical procedures we define the following sequential estimator of a zero of
£ ]
m,
R,
! }-3 (1 Znst = Zn —anh ' K((Zy = Xo)/hn)Yu, n 2L
)
\ Here Z) denotes an arbitrary starting random variable with finite second moment and {a,} is
z \ a sequence of positive constants tending to zero. In fact, the sequence {Z,} will converge under
:.( our conditions to the (unique) zero of
be5 ,
s () = [ vl vy = m(@)x(a),
.
i:,' ) where fx(z) denotes the marginal density of X, but an assumption about fx ensures that the
' zero of the two functions m and m is identical.
’-.‘7: Under mild conditions we show consistency (almost surely and in quadratic mean) and
y :: asymptotic normality of {Z,}. An asymptotic bias term (depending on the smoothness of m)
*i shows up, if the bandwidth sequence tends to zero at a specific rate. Fixed width confidence
‘N intervals are constructed, using a suitable stopping rule based on cstimates of the variance of
J the asymptotic normal distribution.
et

Our arguments can be extended to the problem of estimating extremal values of the regres-
sion function m. Note that m = m/fx and thercfore ' = ¥/f%, where

-

b é‘.\ "

T(z) = fx(z) /y:,?;f(r,y)dy - ﬁz(z)(%fx(:).

e
ws Under a suitable assumption the problem of finding an extremum of m is equivalent to finding
::‘\' a amque) zero of the function r. So it is reasonable to apply a procedure similar to (1). Addi- e
\ tional difliculties turn up since fx has to be estimated separately. We propose to perform the —~-~#~
W estimation by an additional i.i.d. sequence {X,} with the same distribution as X. Define -
& (W
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(2) - Zuyy = Zn = anh P K((Ze = Xu)/ha)K'((Zp = Xa)/ka)Ya

+aﬂh;JKI((ZvI; - X,,)/h,,)l\’((Z,’, - X“)/h,,))',” n2l

We shall prove that {Z.} is consistent and asymptotically normally distributed. Fixed

width confidence intervals are computed by the same technique as for {Z,,}.

If we knew fx the algorithin (2) would simplify, the additional {X,} are obsolete in this

case, here we propose

(3) Z:.+l = Zv’. - a,‘h;zK'((Z:‘ - A'vl)/hu)ynf,\’(z:.)

+anh VK (72 = Xo)/ha)Vafi(ZL), n> L.

The additional difliculty of estimating simultancously fy didn’t occur in the case of esti-
mating zeros, since the problem for m could be transferred to the equivalent problem for m,
which does not involve fy. I practice the additional i.i.d. sequence {X,} could be constructed
by samphng in pairs and discarding the Y obscervations of one element. This results in some
loss of etliciency but makes the practical application possible with the data at hand. Another
proposal that we would like to make s related to the boot-strap. From the first N observations,
a density estimate fy of fx could be constructed and then the algorithm (2) could be started
with {X,} distributed with density fx. A third possibility is to plug in fx into the algorithm

(3). We did not investigate the last mentioned procedures.

Au alternative way of defining an estimator of the zero of the regression function m could be
to construct an estimate of the whole function and then to empirically determnine an observed zero
as an estimate. This procedure would be time consnming in the case of sequential observation
of the date, since for every new observation the whole function has to be constructed whereas
our procedure just keeps one number in memory and updates that number due to the formal
presription (1). Also in cases where an enormous amount of data has to be processed, an estimate
of a zero based on the estimmate of the whole regression function seems to be inadvisable siznice

all the data has to be stored in the memory at a time.

Related work was done by Revesz (1977) and Rutkowski (1981, 1982) who applied stochastic
appreximation methods to the estimation of m at a fixed point. Our derivation of fixed width
onfidence intervals was inspired by the papers of Chow and Robbins (1965), McLeish (1976)
anut Sture (1983). The author last mentioned used in the field of density estimation the kernel
estiziation technique that mtroduces a localizing effect which makes classicid methods, such as
Venter's (1966), applicable,

The rest of the paper is organized as follows. Section 2 contains the results and gives
the consistency proof for {Z,}. In section 3 we present the results of some simulations and an

apphcation of of {Z,} to some real data. In the last section we give the rest of the proofs.




2. Results

A crucial assumption that makes the problem identifiable through m | resp. r] is the
following.

(A1) The marginal density fx of X is positive.

The speed of convergence of {aq} and {h,} is controlied by

- -] ao
(A2.1) Za,, =00 , Za,.h,. < 00
n=1l n=1
oo
(A2.2) Y aih i< oo
n=:)

{A2.3) Z P

The zero Og of m(z) (and of m(z)) is identified by

(A3) inf (z-6)m(z)>0 forall ¢>0.
jz—60|2¢

Smoothness of m is guaranteed by

{A4.1) m is Lipschitz continuous;

(A4.2) m is differentiable in a neighborhood of 8¢ such that
m'(8g) > 1/4;

(A4.3) m is twice continuously differentiable.

The kernel function K has to satisfy the following conditions.

(A5.1) K ia bounded and
/K(u)du = l,/uK(u)du = ()./uzK(u)du < 00
{ADH.2} K i3 differentiable and

hm juK(u)] = /lul K?*(u)du < oo

3
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(A5.3) K is twice differentiable and

ll}im [uK'(u)| = o,/|u|K"?(u).1u < 0o.
%i o0

The joint density f(z,y) has to be smooth in its first argument.

(AG.1) fiz,y) = f(z, )] €|z — zjg1(y) such that [(y* + 1)g,(y)dy < oo.

(A6.2) %,/(z,y) is continuous and
[ f(u.y) = 52 (0, 9)] S |u—vlg2(v)
such that  [(ly| + 1)g2(y)dy < oo. (

Moment assumptions are

[A7) EY* <oo and sup L(Y?X =z).

We have split up the assumptions into several subparts since we will use the subparts

separately. The consistency of {Z,} is shown in

Theorem 1. Assumc(Al), (A2.1), (A2.2),(A3), (A4.1),(A5.1),(A7). Then {Z,} converges to

O, almost surely and in the quadratic mean.

Since the proof of this theorem is very simple and exemplifies the combination of the kernel
method together with stochastic approximation arguments we would like to give it here. The

proofs of the following results are delayed to section 4.
Write
L) = 2y —apgm{Z,) +a,V,
Vo =1{Z,) + Kn(Za — Xa)Ya
where Ko (u) = h ' K(u/ha).

Let 3, = 0{Z,,Z2,...,2Z,}. Condition (A4.1) implics that

E(Val8a) = O(h,) a.s.
E(VY) = O(E(Z, - 60)%) + O(h7?).

n
4, serve that with (A3) and a Lipschitz constant Ly,

(Zno1 - 80)% = (Zn — 69)? = 2a,m*(Z,)( 20 ~ ©0)
+ a2 (Zn) + 2a0Vi(Zn — B0 — anit(Z,))
+ u'iV,:*)
< (1 +a2L2)(Z, — B¢)* + a2V}

+ 2anVn(Zn - 60 - anﬁl(zu))'

4




Hence by (A7),
E((Zny1 — 60)%18a) < (1 + a2 L2 )(Z, - 69)?

+ ()(h'l )“u(l + an["'n) Izn - 9()[
+ ug, I‘(V 'Bu)
S (l + ﬂn)(‘n - e())z + 675-

where
h = ()(h.,—‘za?l + hya, + aﬁ)

n = O(hnqa,, + 1 2a%),

if we use the silple inequalities

|Zn — 60 S 1+ |Zy — 6y)*
E(V2|8,) < 2m¥(Z,) + O(h %) sup E(Y?|X = 7)

Note that by (A2.1), (A2:2) Y fa; 3 6. < co.
The assertion follows now from Venter (1966), Theorem 1. Nixdorf (1982), Theorem 1.1.2 has
iven a corrected version.
The asymptotic normality is shown in
Theorem 2. Assume (A1), (A3), (A44.2), (A4.3), (A5.1).
Let a, = ”_l;hn = 71—1,1/\) <~v< l/“')
Then

n T {Z, - 69} — N(b(),0%(7))

where
b(v) =0 if 1/6 <vy<1/2

- m"(eo)/uzK(u)du/(2ﬁl'(90) —14q) i y=1/5
= [ K* [ 1080, n)du/(2i(00) - 1+

Fixed width asymptotic confidence intervals for the unknown parameter Qg are constructed via

~+timators of b(y) and o?(y).
Estimators of [y2f(6p,y)dy, m'(0),m () are

5'-
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18 (4) Sin=n"'Y " K, (2 - X)Y2,
,“'i =1

(5) S =n"'Y_ K} (Z - XOY.,
q’..n' =1

o San =0t K(Z, - X))V,

1+l
a o respectively.

I . . . 2 .
{\‘. An estimator for the asymptotic variance a<(7) is therefore

Sp o= /,\’251"/(252“ —14q) i 28, -149>0,

Yo = else

So the following stopping rule scems reasonable.

Y &
e
‘s

(6} N(d)=inf{ne€IN|s, + nl< nl_"d"'/:,./-_,}_

T

V‘.!
ey

where 2,79 15 the (1 - a/2)— quantile of the standard normal distribution.

525

The fixed width confidence intervals are constructed via J

' Theorem 3. Let a, =n"' h, =n~7,1/5 < 7 < 1/3 and assume (A1), (A3), (44.2), (A4.3), '
*_‘ {A5.1),(A5.2). Then if N(d) is defined as in (6) for some0<a<1l,asd — 0
A
n N(d) T {Zn(a) = B0} —° N(b(7),0%(x)).
.'{.":}
- In the case 1/5 < v < 1/3 an asymptotic confidence interval of fixed length 2d and asymp-
: totic coverage probability 1 — a is given by
[ \::1
i;:; (2N = 4. Zn ) +d].
R
; -‘_. For vy = 1/5 the bias can be estimated by
.
:::-" by = /uzK(u)dusg,,/('ng,. = 1+).
AN
. \.}\
::’::: Then with H,, = Z,, ~ n;“ﬂnb,. an asymptotic confidence interval is given by
-N-‘.f [HN(d) —-d, HN(,‘) +dl [
2 "
::3"4' 4
,f‘l"
1 .{
N
4
AP,
s
D‘ 3
i}::'




T

L where

n._:-“'

e 2 2 - -

s ohe(n) = Jx(Ou) [ 1@ty [ K [(K) /(27 (0m) - 14 40

A

s Remark 3. For simplicity of presentation we didn’t arrange for a wider range of v such
o that an asymptotic bias terin occurs. If 7 is twice continuously differentiable then the range of
_,.' allowable exponents can be extended to 1/8 < v < 1/4. The discussion would be in analogy to
o Theorem 2 with 7 in the place of .
R

\)f Estimators for the numerator and denominator of 0%,(7) are constructed in the following
g % way.

:: " n n

;.'.: S, = n! Z Kn(Z; - .\’;)n‘l Z K;.'(Z" - A’.‘)Y,2
" i‘:':’ 1=1 =1

SN
Fan "2 i~ 11 estimator for fx(Oar) [ y2f(Om, y)dy, whercas

A

n n
Sun=n"' Y Kn(Zi- XOn7 Y K, (Z - 1)V,

\' s=1 vl

B n n

v ~n7 S Ky (Zo- X)Yin ' YK, (Zo- X,)

-y i=1 a1
i ""i'd:
P, 7
e
L9
e
R,

K

R

B

ey

el

_&,‘

e

ozl e e NS
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Remark 1. The range of v had to be reduced to 1/5 < 4 < 1/3 since otherwise Si,
would no longer be a consistent estimator of m’(6p).

Remark 2. It will be seen in the proof of Theorem 3 that, as d — 0, N(d)/b(d) — |
almost surely where 6(d) = inf{n € IN { 0%(7) < n! "’d"’/z:':/z}. Therefore N(d) exhibits the
following limit behavior,

'.’(,Y))l/(l—-v)z'-’/“—ﬁ)

dz/(l—w)N(d) — (o " ,

asd — 0.

The analysis of the sequential procedure { Z“} is quite analogeous to that of {Z,}. we define
the (unique) zero of 7 as Byy.
Theorem 4. Assume (Al),(A2.1),(A2.3),(A5.1),(A5.3),(A6.1), (A7) and let (A3),(A4.1) be

fulfilled with ¥ in the place of . Then {Z,,} converges to @ almost surely and in the

quadratic mean.

The next theorem gives the asymptotic normality of {Z}.

Theorem 5. Let a, =n~ ! and hy = n~7,1/6 < v < 1/5 then under (A1), (A5.1), (A5.3),
(A6.2), (A7) and (A3), (A44.2), with f in the place of m.
Then

n*THZ, - Oum} —£ N(0,03,(7)),




&
R converges under our assuimnptions to 7' /6, almost surely. Define

n M

/Kz/(;{')f.s';,,/(zs;,, - 1+47)

Nl(‘l) ‘."/{n €N , SaM n’ ! < "l--27d'32"/2}_

14
.

}

Then parallel to Theorem 3 we have

-

Theorem 6, Letan =n~'and hn =n77,1/6 € v < 1/5, and let the conditions of Theorem §

be fultiled. Then, as d — 0

o R

N (VP20 Z0, 0~ Oa) = N(0.a3 (7). .

‘.l ’.l
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3. Monte Carlo Study and an Application

In this scction we report the results of a Monte Carlo experiment comparing the performance
of our sequential procedure when some of the involved parameters are tuned at different levels.

We also report an application of the algorith (1) to some real data.

The basic experiment to assess the accuracy of Theorem 3 consisted of 200 Monte Carlo

replications with the numbers N(d), Zn ) and Sy ) to be reported. The joint probability den-

\:-' sity function f(r,y) that we used was f(z,y) = l[(,_ll(x)n.‘l@((y —m(r))/o.), o the probability
‘-::j density function of a standard normal distribution and m(r) = -a{(1 - z)° — 1/4} for a = 4,8
" was the regresssion curve. We report the result for Z; = (.45 (Table 1) and for Z, = 0.2 (Table i

2). The parameter a was set to a = 0.05. The zero that was to be estimated was 69 = 1/2

. and two different values of d and o, were fixed, namely d = 0.05,0.1 and o, = 0.1, 1.0. As the
kernel K we have chosen the Epanechnikov kernel K (u) = 3/4(1 —u°) for |u] < 1 and K(u) =0
for ju} > 1. the sequence of bandwidths was set to b = h,, = n77, 4 = 0.21L. In Table 1 the
results for the starting point 2y = 0.45 are shown. The figures of Table | indicate that the fixed

accuracy result

Table 1 about hiere

given 1 Theorem 3 yields a good approximation of Qg even for d = 0.1. This 1s seen from the
counts in the Zygy— column. It is indicated there how many times (from 200 Monte Carlo
trials) the true parameter Q9 = 1/2 was in the confidence interval [Zy () — d, ZNn) t+d]. As
a measure of spread we added the quantiles Qus and Qs in the third and fourth column of
cach entry. A small paradox occurs when we compare the figures for different values of a. It
is expected that the procedure (1) stops earlier with o = 8 than with a = 4, since the higher
derivative in the zero should speed up the convergence of {Z,} to 6. In both Table 1 and Table
2 1t 1s scen that the average of the stopping times

Table 2 about here

< l'

'4
RO

sver 200 Monte Carlo runs) is considerably higher for ¢ = 8 and 6. = 0.1 than for a = 4 and

A

7. = 0 1. This effect is due to the crude approximation var(Y|X = z)x 0%, 22,6, as can be seen
from the figures for Sy(y). In the case of a = 8 the statistic Sy (4 considerably overestimates
the true asymptotic variance o). For comparison we list some correct o(7) = o(0.,a,7). For
N mstance, a(0.1,4,0.21) = 0.00083 whereas ¢(0.1,8,0.21) = 0.00039.

In a small application we took the sequence of random variables {( X}, ¥;)}, X; =age, Y; =weight
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of female corpses) which was gathered from 1969 to 1981 by the Institute of Forensic Medicine
of Heidelberg. It is an interesting question in forensic medicine to estimate the mean age from
the weight of unknown corpses. We restricted our attention to the ages between 0 and 20 years
in order to fulfill assutmmption (A3). We put mg = 40 kg, and we applied the procedure (1) and
ended with different starting values Z) at Zygg) = 116 years and N{d) = 563, for d = 0.1 and
N{d) = 224 for d = 0.2(Z; = 0.4). A plot of the first 732 data pairs, restricted to ages between
0 and 20 years, should illustrate the accuracy of Zy (g (Figure 1).
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4. Proofs

q The theorems are proved by a functional central limit theorem given by Berger (1980), who
extended a result of Walk (1977), that made it applicable in our setting. Lemma 1 describes

’- the asymptotic behavior of
(7 Walt) =n 2R+ 07Vt — ) { R ar = Riag}, 0t <,

where

R = K2k (Ze ~ Q) - b(7)], ke IN.

\ Lemma 1. Let the conditions of Theorem 3 be satished, then W, (¢t), as defined in (7) converges

weakly in €0, 1] to the Gaussian process
3 (8) Git) = [ K* [ 1@y [ w00 aw (), o<esa,
) (0.3}

where W ois the standard Wiener process starting at 0.

B s Proof. Define

":-"' 3..:0{21,...,2,.}

—{Zz=)

Ca Zuet = €0 = (1= Bo/n)(Za —6y) +n "5V, 40 5 T,

*
']
#
e

where

sy,

v, - ,L—n/zE{K(é_;_X_n

PPN
“H N
/I ."

f
4
LA

Zn— X,
h

)ynlsn} "’h—l/zx( )Y'U

N

4

To=n'7 {(Zn) ~ E[Kn(Za — X0)YalBal}

and {B,} is a sequence of random variables converging almost surely to m’(8y} such that
B.(Z, ~ 8y) = m(Z,). Such a scquence exists because m is differentiable in 69 and Z,, — 6Oy

almost surely by Theoremn 1. The assumption on a,, and h, imply that
Tn — 1/2 [ u® K (u)dun”(6y). Note that E(V,|8,) = 0 and that by (A7) and (A6.1),

DRRIEL
I'yl' ."

0

C

E(V2|8,) — /Kzfyzf(eo.y)dy, almost surely ,

E(V,

’IJ

) = O(1).

OSLREA
o (A
s

Furtherinore we have for all r > 0

E(VZI(VE > rn]8,) O™ 2)P(V2 > rn|8,)
o <O(h™*n~!) = o(1) alinost surely.
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* The lemma follows now from the gencralization of a theorem of Walk (1977) , given by
NI Berger (1980).

o0
(IR D

e The following lemma gives an analogeous result for the Kiefer Wolfowitz type sequence
~ {7} delined in (2)
- Lemma 2. Let the conditions of Theorem 6 be satisfied. Define W, (¢) as in lemma 1 but with

i r in the place of m and .
ot Re = k72552 (2, — 0y).

N Then Wa(t) converges weakly in C[0, 1] to the Gaussian process

: Ga(t) = [x(Onr) / v [(Or,v)dy / K? / (K')? / WO -0 (), 0<t< 1.
0.1]

- Proof of Theorem 2. Use Lemma 1 and evaluate G (t) at t = 1.

Prooof of Theorem 3. Define the sequence

]
: a

s &y o
LA

b(d) = inf{n € N | 0*(v) < n'~7d?/22 ).

4
1y 4
. ..‘ »

‘s
»
.

The estimators Sy, Sz defined in (4), (5) converge to [ y* (B0, y)dy, ' (o) respectively. This

entails that, as d — 0,

J
AR
.,

a4,

N(d)/b(d) — 1 almost surely. 4

l"l’

.
]
.
LR

Now apply Lemma 1.

'
.'

?l {‘

Proof of Theorem 4.  Like the proof of Theorem 1.

Proof of Theorem 5. Use Lemna 2 and evaluate G2(¢) at ¢t = 1.

Ay Proof of Theorem 6. Similar to the proof of Theorem 3.
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.05
.05

= .45, vy

.05
.05

.1
.05

mean std Dw
137 10 120
229 17 200
43 3.5 38
62 6.7 51
642 97 496
469 46 394
129 37 76
103 18 72
N (d)
= .21, a = .05
mean std Ow
163 12 141
255 17 227
56 7 46
74 8 61
646 83 518
479 44 417
139 31 39
118 19 8c
N{(d)
= ,21, a =.05
S Ty M Y\ CenCs oM

Q95
156
259

50

74
806
551
207

95
183
283

70

90
u02
550
192
146

mean

.518
.515
.519
.517
.51

.515
.52

.525

mean

.517
.518

.515
.516
.512
.515
.522

std

.021
.019

.039
.025
.023
.054
.043

std

.018
.019
.027
.036
.026
.02

.044
.042

z

Z

Tahle

Qg

.483
.483
.46%
. 449
.467
.475
.429
.461

N(d)

Table 2

g

.485
.484
.464
.456
.471

.475

.437

. 454

N{d)

1

Qg

5

.553
.547
.574
.582
.548
.559

.6

.596

%

1

)

.547
.552
.561
.593
.562

counts mean

188 .024
194 .043
199 .027
196 .05
188 .105
181 .081
184 .11
192 .09

counts mean std

192 .03
189 .04
199 .04
196 .064
174 .105
188 .082
192 .118
193 102

RS )

std Dw
.002 .02
.003 .037
.005  .018
.007 .038
013 .127
. 006 .07
.028 .065
.015 .062
Py (a)
Dm
.002 .025
.003 .042
.007 .031
.007 .05
011 .088
.006 .0Q73
.024 .077
.015 .074
Uzﬁmv

Q9

.028
.048
.035
.062
.084
.093
.168
.114
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